Eyes in the Sky: HD Ethernet Cameras Take Flight Test Imagery to New Heights

Aerospace & Defense Technology

Published in Aerospace & Defense Technology

There is increasing demand for high-quality High Definition (HD) video for airborne applications such as Flight Test Instrumentation (FTI). Ideally, such new camera solutions can reduce the weight and difficultly of installing wiring, and enable data to be coherently combined with image data. Ethernet cameras can address these needs with built-in compression and multiple output streams. Additionally, as Ethernet-based networks have become an attractive choice for FTI applications, we see increased requirements for integrating Ethernet-based cameras with FTI data acquisition equipment, network recorders, and telemetry systems as this removes duplication of wiring and devices.

Using an Ethernet camera that supports onboard compression enables video compression to be removed from the FTI Data Acquisition System (DAS), or it can eliminate a dedicated unit. The camera can be connected via an Ethernet switch directly into the system, like any other data acquisition unit. Even better, because there is no need for dedicated hardware compression, SWaP is minimized and installation wiring greatly simplified.

As legacy airborne cameras are rapidly becoming obsolete, designers, systems integrators and end users have sought up-to-date digital video alternatives that offer higher quality images. Older cameras typically use coaxial wiring, which while fairly immune to noise and generally well understood, is heavy and can create installation headaches. In addition, the move to HD also adds complexity and limits the number of video frames that can be transmitted and stored without additional conversion hardware, because of the sheer size of the data they generate.

One approach for meeting the need for higher performance FTI cameras without adding complexity is to use IP cameras that utilize Ethernet wiring, switches and recorders. Ethernet IP cameras offer several key benefits when compared to traditional Composite Video Baseband Signal (CVBS), such as simplified installation, reduced system weight, and high-quality images. Even better, the required infrastructure is often already installed on the aircraft for other data acquisition purposes.

Read the full article here in Aerospace & Defense Technology.