
Page 1 cwcelectronicsystems.com

Te c h n o l o g y  W h i t e  P a p e r

S C R A M N e t  G T

Effective Use of SCRAMNet GT Network Interrupts

Introduction

Network interrupts are messages that can be passed 
among nodes on a SCRAMNet GT network. They 
can be used for event notification and process 
synchronization between different processes distributed 
across the network. The SCRAMNet GT API provides 
an efficient and powerful interface for using the 
network interrupt mechanisms provided by SCRAMNet 
GT. This document gives an overview of the available 
network interrupt mechanisms and discusses how to 
make use of them in software.

Network Interrupts

There are two types of network interrupts: broadcast 
and unicast. Each broadcast interrupt that is sent can 
be received by every node on the network. Unicast 
interrupts are sent to (and received by) a specific node 
on the network.

Each broadcast interrupt has a designated broadcast 
ID in the range 0 to 31. Each ID value can be used to 
indicate a different user-defined event took place. The 
ID value is especially useful for categorizing interrupts 
into different classes of events. For instance, all 
interrupts sent to signal a configuration change in the 
system could use broadcast ID 16.

Both broadcast and unicast interrupts include an 
additional user-defined 32-bit value. This value can be 
used to pass details about the event to the receiving 
node. For example, it may pass the GT memory offset 

and/or the buffer size of an updated GT memory 
region.

The reception of specific interrupts at a node can be 
enabled or disabled by setting the interrupt masks for 
the node. This is done using the scgtSetState() function 
or using gtmon. See below for more information.

Setting the Interrupt Masks

Network interrupt messages trigger real hardware 
interrupts and are subsequently processed by the 
SCRAMNet GT driver. Therefore, it can be beneficial 
to disable reception of those interrupts that are not 
being used by applications on a given node. This can 
save processing time in system configurations where 
network interrupt messages are heavily used. The 
interrupt masks allow for selection of which interrupts 



Page 2 cwcelectronicsystems.com

are received and processed. This selection applies to 
the SCRAMNet GT device and to all processes using 
the device rather than on a per process basis.

The broadcast interrupt mask is a 32-bit vector used 
to enable/disable reception of broadcast interrupts 
with selected broadcast interrupt ID values (not to be 
confused with node ID). By default, the mask value is 
0, indicating that all broadcast interrupts are disabled. 
To enable reception of broadcast interrupts that have 
ID 4, set bit 4 to 1. The mask should be set to 0x10. To 
receive interrupts that have ID 0 or ID 4, set bits 0 and 
4 of the mask to 1. The mask value should be 0x11 in 
this case.

Example Broadcast Interrupt Mask
(Broadcast interrupt IDs 0 and 4 are enabled)
0 0 0 0 0 .. 0 0 0 1 0 0 0 1

31 30 29 28 27 .. 7 6 5 4 3 2 1 0

The broadcast interrupt mask can be set using gtmon.

 gtmon -b 0x11

You can also use scgtSetState() inside of your program 
to set the mask.

 scgtSetState(&handle1, SCGT_BROADCAST_ 
 INT_MASK, 0x11);

To set bits in the mask without changing the enabled 
bits:

 uint32 bmask;

 bmask = scgtGetState(&handle1, SCGT_ 
 BROADCAST_INT_MASK); 
 scgtSetState(&handle, SCGT_BROADCAST_ 
 INT_MASK, bmask | 0x11);

Set the mask value to 0xFFFFFFFF to receive all 
broadcast interrupts.

Unlike broadcast interrupts, unicast interrupts do 
not have an associated ID. They can be enabled or 
disabled by setting the unicast interrupt mask to 1 or 0 
respectively.

To enable unicast interrupts using gtmon:

 gtmon --uinton

To disable unicast interrupts using gtmon:

gtmon --uintoff

You can also use scgtSetState() to enable or disable 
unicast interrupts.

scgtSetState(&handle, SCGT_UNICAST_
INT_MASK, 1);
or
scgtSetState(&handle, SCGT_UNICAST_
INT_MASK, 0);

Interrupt-Self State

In usual operation, a SCRAMNet GT node does 
not receive network interrupts that it sent (more 
precisely, those sent by a node having the same 
node ID). However, sometimes it is useful to receive 
these interrupts. For example, two processes that are 
designed to work across the GT network on different 
nodes may be running on the same node. For one 
process to receive network interrupts from the other 
process (or itself), the interrupt-self state must be 
enabled.

To enable the interrupt-self state using gtmon:

 gtmon --sinton

To disable the interrupt-self state using gtmon:

 gtmon --sintoff

You can also use scgtSetState() to enable or disable the 
interrupt-self state.

scgtSetState(&handle, SCGT_INT_SELF_
ENABLE, 1);
or
scgtSetState(&handle, SCGT_INT_SELF_
ENABLE, 0); 

Error Interrupts
Error interrupts are used to report errors occurring at 
the local node. An error interrupt is generated each 
time a link error occurs and when the driver’s internal 
interrupt queue overflows. They are retrieved from 
the driver using the same mechanism as, and during, 
network interrupt retrieval (scgtGetInterrupt()). Error 
interrupts are not network interrupts, and cannot be 
sent.



Page 3 cwcelectronicsystems.com

The possible error-interrupt values are:

SCGT_LINK_ERROR - Link error occurred.

SCGT_DRIVER_MISSED_INTERRUPTS – The GT device 
received interrupts faster than could be processed, 
which caused the interrupt queue to overflow.

The scgtInterrupt Structure

The scgtInterrupt structure is used to store information 
about a network interrupt. It specifies a network 
interrupt to send when passed to the scgtWrite() 
function or a network interrupt received when returned 
from the scgtGetInterrupt() function.

The scgtInterrupt structure is defined as follows:

typedef struct scgtInterrupt

{

uint32 type;

uint32 sourceNodeID;

uint32 id;

uint32 val;

} scgtInterrupt;

Before sending an interrupt, set the members of 
scgtInterrupt as described in the following table. 
The sourceNodeID member is determined by the GT 
hardware and does not need to be set.

scgtInterrupt 
member

Unicast Broadcast

type SCGT_UNICAST_INTR SCGT_BROADCAST_INTR

id Destination node ID 
[0.255]

Broadcast ID [0.31]

val User-defined value User-defined value

After receiving an interrupt, the members of 
scgtInterrupt are as described in the following table.

scgtInterrupt 
member

Unicast Broadcast Error

type SCGT_UNICAST_INTR SCGT_BROADCAST_INTR SCGT_ERROR_INTR

sourceNodeID Source Node ID Source Node ID Reserved

id Reserved Boardcast ID Reserved

val User-defined value User-defined value Error code

Note that the id member is used differently depending 
on the type of interrupt. When sending or receiving 
broadcast interrupts, the id member is set to the 
interrupt ID of the broadcast interrupt (value in the 
range [0,31]). When sending a unicast interrupt, 
this member is set to the destination node ID. The id 
member is not valid when receiving unicast or error 
interrupts.

The val member is used to send a user-defined 32-bit 
value along with a broadcast or unicast interrupt. If an 
error interrupt is received, this member holds the error 
code associated with the error.

Sending Interrupts

To send a network interrupt, use the scgtWrite() 
function. If a data buffer is specified, the scgtWrite() 
function will write the data to GT memory before 
sending the network interrupt.

To send a broadcast interrupt:

♦ Set type to SCGT_BROADCAST_INTR

♦ Set id to the desired interrupt ID (in the range  
   [0,31])

♦ Set val to the desired 32-bit value.



Page 4 cwcelectronicsystems.com

The following code demonstrates how to send a 
broadcast interrupt that has broadcast ID 20.

scgtInterrupt intr;

intr.type = SCGT_BROADCAST_INTR;
intr.id = 20; /* Broadcast interrupt 
ID */
intr.val = 1234; /* set this to your 
desired value */

scgtWrite(&handle, 0, NULL, 0, 0, 
NULL, &intr);

To send a Unicast interrupt:

♦ Set type to SCGT_UNICAST_INTR

♦ Set id to the desired destination node ID.

♦ Set val to the desired 32-bit value.

The following code demonstrates how to send a unicast 
interrupt to the SCRAMNet GT node with node ID 5.

scgtInterrupt intr;

intr.type = SCGT_UNICAST_INTR;
intr.id = 5; /* destination node ID 
*/
intr.val = 1234; /* set this to your 
desired value */

scgtWrite(&handle, 0, NULL, 0, 0, 
NULL, &intr);

To send a Unicast interrupt:

♦ Set type to SCGT_UNICAST_INTR

♦ Set id to the desired destination node ID.

♦ Set val to the desired 32-bit value.

The following code demonstrates how to send a unicast 
interrupt to the SCRAMNet GT node with node ID 5.

scgtInterrupt intr;

intr.type = SCGT_UNICAST_INTR;
intr.id = 5; /* destination node ID 
*/
intr.val = 1234; /* set this to your 
desired value */

scgtWrite(&handle, 0, NULL, 0, 0, 
NULL, &intr);

Receiving Interrupts

The SCRAMNet GT driver stores network interrupts that 
were received by the GT device in a circular queue in 
system memory. Each process that retrieves network 
interrupts from the queue has its own scgtIntrHandle. 
This handle is used to mark a place inside the queue 
to indicate which interrupts a process has retrieved 
using scgtGetInterrupt(). This method of queuing allows 
multiple applications sharing a single SCRAMNet 
GT device to have access to all incoming network 
interrupts. This method also guarantees that the most 
recent interrupt messages are not missed and that 
notification of old interrupts that were missed can be 
passed to the user.

Before we can retrieve network interrupts from 
the SCRAMNet GT driver, we must first call 
scgtGetInterrupt() with an intrHandle value of -1. This 
tells scgtGetInterrupt() to initialize our interrupt handle 
so we can retrieve interrupts starting from this point in 
time.

For example:

scgtIntrHandle intrHandle = -1;
scgtInterrupt intrBuff[100];

scgtGetInterrupt(&handle, &intrHandle, 
intrBuff, 0, 0, &numIntrRet);

In this example, the scgtGetInterrupt() function will 
return immediately without retrieving any interrupts. A 
non-zero timeout and numInterrupts may be specified 
during the first call to scgtGetInterrupt() if desired. After 
the call, the interrupt handle is initialized.



Page 5 cwcelectronicsystems.com

Now, to retrieve network interrupts from the driver, 
call scgtGetInterrupt() supplying a non-zero maximum 
number of interrupts to return. Here we supply 100 as 
the maximum number of interrupts to retrieve.

uint32 ret;
scgtInterrupt intrBuff[100];

ret = scgtGetInterrupt(&handle, 
&intrHandle, intrBuff, 100, 250, 
&numIntrRet);

The scgtGetInterrupt() function will retrieve interrupts 
from the driver’s interrupt queue that have not been 
previously retrieved. If there is at least one interrupt 
in the queue, the scgtGetInterrupt() function will return 
immediately allowing the calling program to process 
the interrupt(s). If there are no interrupts in the queue to 
retrieve, scgtGetInterrupt() will wait for interrupts for up 
to the specified timeout value. The timeout value is 250 
milliseconds in our example. During the wait time, the 
CPU is released for other processes (or threads) to use 
until an interrupt arrives. After retrieving one or more 
interrupts from the driver the scgtGetInterrupt() function 
automatically updates the interrupt handle to reflect the 
new location in the driver’s interrupt queue.

Sender/Reciever Communication 

Example

In the following example, a sender of a point-to-
point transfer writes a buffer of size 0x2000 at offset 
0x1000. After the write operation completes, a unicast 
interrupt is sent to node 5. The reader process (running 
on node 5) waits until it receives a unicast interrupt 
and then reads the data from GT memory. The val 
member of the interrupt contains the GT offset from 
which to read. Here, the size of the data is hardcoded 
for both processes, but the size of the buffer could be 
stored in the first element at the offset indicated by val, 
for example.

Note that the receiver code has to be started before 
the sender so it sees the network interrupt.

Sender code

uint32 gtOffset = 0x1000;
scgtInterrupt intr;

intr.type = SCGT_UNICAST_INTR;
intr.id = 5; /* destination node ID 
*/
intr.val = gtOffset; /* set this to 
your desired value */

scgtWrite(&handle, gtOffset, 
dataBuffer, 0x2000, 0,
&bytesTransferred, &intr);

Here we used a feature of sending interrupt 
automatically after transfer completion.

Receiver code

scgtIntrHandle intrHandle = -1;
uint32 numIntrRet = 0;
uint32 done = 0;
scgtInterrupt intrBuff[1];

/* initialize intrHandle */
scgtGetInterrupt(&handle, &intrHandle, 
&intrBuff, 0, 0, &numIntrRet);

while (!done)
{

scgtGetInterrupt(&handle, 
&intrHandle, &intrBuff, 1, 250,
&numIntrRet);
if (numIntrRet != 0)
{

if (intrBuff[0].type == SCGT_
UNICAST_INTR)
{

gtOffset = intrBuff[0].val;
done = 1;

}
}

}

scgtRead(&handle, gtOffset, 
dataBuffer, 0x2000,
0, &bytesTransferred);

Additionally, we could use the sourceNodeID field in 
the interrupt structure to look for the interrupt from a 
specific node in the receiver code.



Page 6 cwcelectronicsystems.com

©
 C

op
yr

ig
ht

 2
00

9,
 C

ur
tis

s-W
rig

ht
 C

on
tro

ls 
El

ec
tro

ni
c 

Sy
ste

m
s

A
ll 

Ri
gh

ts 
Re

se
rv

ed
. M

KT
-E

S-
SC

RA
M

N
ET

G
T-0

10
51

0v
2

Dedicated Interrupt Thread

In systems that utilize asynchronous even notification, 
network interrupts can be received at any time during 
a program’s execution. If the program must respond 
to the interrupt in a timely manner, spawning a 
thread that is dedicated to interrupt handling can be 
advantageous. The thread would continuously call 
scgtGetInterrupt(). For each network interrupt retrieved, 
the thread would then call a desired function or 
perform some task.

While there are no incoming interrupts, the 
scgtGetInterrupt() call is using very little CPU time 
waiting for an incoming interrupt to arrive. The main 
application thread could continue its work while 
interrupt handling occurs in the background.

Here is a simple function that can be spawned as a 
thread to implement a callback system.

void intrThread()
{

scgtIntrHandle intrHandle = -1;
uint32 numIntrRet = 0;
uint32 done = 0;
scgtInterrupt intrBuff[100];
int i;

/* initialize intrHandle */
scgtGetInterrupt(&handle, 
&intrHandle, &intrBuff, 0, 0,
&numIntrRet);

while (!exitThread)
{

/* get up to 100 interrupts ... 
The number of interrupts to get
should be tuned to your specific 
application. */

scgtGetInterrupt(&handle, 
&intrHandle, &intrBuff, 100, 250,
&numIntrRet)

/* call the interrupt handling 
function for each interrupt */

for (i = 0; i < numIntrRet; i++)
{

/* the interrupt can be filtered 
here to dispatch it to
different functions based on 
type or source node etc. */
handle_the_
interrupt(&intrBuff[i]);

}
}

}

This method can also be used to preserve legacy 
software structures that used signals or callback 
functions for event notification. The interrupt thread can 
simply call the equivalent signal handler or callback 
function.

Conclusion

Network interrupts provide an efficient and practical 
way to send event and synchronization information 
across the network between processes. The SCRAMNet 
GT API provides simple and powerful mechanisms for 
using network interrupts, allowing the system designer 
flexibility when incorporating network interrupts into 
distributed systems. This efficiency and flexibility can 
be an enabling factor in many distributed system 
designs.

Product specifications mentioned herein are subject to change without 
notice. SCRAMNet is a registered trademarks of Curtiss-Wright Controls 
Electronic Systems. All other trademarks or registered trademarks mentioned 
herein are the sole property of their respective owners. © 2006, Curtiss-
Wright Controls Electronic Systems, All Rights Reserved.


