
Page 1 cwcelectronicsystems.com

Te c h n o l o g y W h i t e P a p e r

S C R A M N e t G T

GT Memory Access: PIO vs. DMA

Abstract

When transferring data to and from a data store,
selection of the most efficient and timely method
for doing so is often critical. Selection of an under-
performing method can have an adverse impact on
what would otherwise be a high performance system.
Therefore, when presented with a choice of methods,
it is important to understand the characteristics that
each provides so that the correct selection(s) can be
made. This paper discusses the strengths, limitations,
and performance characteristics of the methods for
accessing GT memory to help ensure that the correct
transfer method is selected for the target system.

Introduction

Management of data in GT memory can be
accomplished using either of two transfer methods.
These methods are Programmed Input/Output (PIO)
and Direct Memory Access (DMA).

Identical operations on GT memory can be achieved
with PIO and DMA. Still, it is important to select the
method that meets application performance demands.
Each transfer method has its own strengths. It is not
necessary, however, for a program or system to
use only one transfer method, as the GT hardware
supports simultaneous PIO and DMA data transfers.

PIO Access to GT Memory

The PIO transfer method allows GT memory to be
written and read similarly to system memory. During

PIO transfers, the CPU initiates the movement of data
over the PCI bus, between host memory and GT
memory. This means that a program can read or write
GT memory simply by executing a CPU instruction
that dereferences an address within the GT memory
address space. This also means there is no API, driver,
or interrupt overhead associated with PIO transfers,
as there is with DMA. This lack of overhead typically
makes PIO more efficient than DMA on small data
transfers.

GT memory can also be read or written in 8-bit, 16-bit,
and 32-bit words as an atomic operation using PIO.
Atomic operation is not possible on sub-32-bit words
using DMA, for which sub-32-bit granularity is not
available. To perform an 8-bit modification with DMA,
one must read a 32-bit word, modify the correct byte
in the word, and then write the word back with DMA.

Since PIO allows the CPU to access GT memory
directly as if it were system memory, this gives the
capability of transferring data to/from the GT device
without also having the data in system memory. This
system-memory-like access is achieved with PIO by
using device memory locations as the operands in
computations. For example, let pGT be a C-code
pointer to some location in GT memory. The following
C-code instruction would perform two read accesses
and one write access to GT memory:

pGT[2] = pGT[0] + pGT[1];

Page 2 cwcelectronicsystems.com

However, this type of access is only recommended for
somewhat trivial situations, such as updating control
information. High-speed processing of data in system
memory, after retrieval from GT memory, is more
appropriate for data processing situations. GT memory
is not cached by the CPU, as system memory typically
is. Also, if processing involves modification and re-
use of information in the data set, write latency to GT
memory caused by network propagation and insertion
times can cause read-back of old data. Additionally,
GT network bandwidth is shared by all nodes, and
writes to GT memory generate network traffic in most
configurations. Therefore, processing data in system
memory prevents unnecessary network traffic from
impeding other nodes.

Lastly, the PIO capability (PCI slave interface) of GT
memory allows it to be accessed by any PCI bus
master. For example, the DMA engine on a second PCI
network device in the system could read or write its
data directly to/from GT memory, eliminating copying
to and from system memory, and processing steps
that may otherwise be required to complete the same
objective.

Summary of PIO access characteristics:
♦ No API, driver, or interrupt overhead
♦ CPU (a PCI bus master) reads and writes data
♦ One byte transfer granularity
♦ System-memory-like access

DMA Access to GT Memory

The DMA transfer method allows GT memory to be
written and read in contiguous blocks, and produces
results equivalent to a memory copy. During DMA
transfers, the GT hardware initiates the movement of
data over the PCI bus, between host memory (or other
PCI-visible memory) and GT memory. GT hardware
transfers data directly to or from an application
provided buffer. The data is not first copied by the
driver into a driver/kernel memory buffer.

The GT hardware has two DMA engines; one executes
read requests and the other write requests. The GT
driver synchronizes access to the GT hardware and
DMA engines, serializing the execution of DMA transfer
requests in each engine. No more than one DMA

request will be in progress in a DMA engine at any
given time, but a write DMA and a read DMA can be
in progress concurrently. PIO accesses to GT memory
can be initiated, accepted, and completed by the GT
hardware during DMA transfers. The PIO accesses
are independent of the DMA engine and are not
synchronized or serialized with DMA engine transfers.

The GT DMA engines have 4-byte (32-bit) granularity.
As such, transfer sizes must always be a multiple of
four bytes, and the system memory and GT memory
addresses must be aligned to natural 32-bit word
boundaries.

In general, system throughput will be maximized when
data is transferred in large blocks using DMA, as there
is API, driver, and interrupt overhead associated with
initiating and completing DMA transfers. As transfer
size decreases, this overhead has an increasing impact
on throughput. Applications that transfer small blocks of
data can eliminate DMA overhead by using PIO, and
may thereby achieve higher throughput with PIO.

During DMA transfers, the CPU is available to perform
other system tasks, such as executing other processes.
A single application can take advantage of the CPU
availability by using multiple threads. For example,
thread A may be dedicated to retrieving data from
GT memory with DMA. The data will be stored in one
of two system memory buffers. While one buffer is
updated, thread B can process the data in the other
buffer. This would streamline the application by using
processing time more efficiently.

Page 3 cwcelectronicsystems.com

Summary of DMA access characteristics:
♦ GT hardware performs data transfer
♦ CPU free for other system tasks
♦ API and driver overhead
♦ Four byte transfer granularity
♦ Serialized and synchronized by driver and

hardware

Analysis with the gttp Util ity

An intelligent selection of GT memory access method
can be made using the characteristics given above.
However, each system and design can still benefit from
some analysis. The gttp application provided with
the GT software distribution can assist in performance
analysis of the GT within the target system. The gttp
throughput graphing option(s) -GA, can be used
to collect textual performance numbers for varying
transfer sizes. These numbers provide a good starting
point for evaluating system performance. A case study
follows.

Table 1 shows the GT throughput summary report1
obtained with command ‘gttp –GA’ on a computing
system hereafter referred to as SystemA The throughput
numbers are in MB/s (106 bytes/second), and
were collected with minimal system load from other
applications and no other GT network traffic. The
column headers are interpreted as follows (if neither P
nor M are present, then DMA access was used):

SIZE contiguous and continuous transfer buffer size
in bytes

w indicates write throughput to GT memory
r indicates read throughput from GT memory
P indicates PIO access (32-bit accesses)
M indicates system memory throughput (GT

memory not involved)
S indicates the test repeatedly transferred the

buffer for 1 second

Table 1: A gttp throughput summary

1 The throughput numbers presented in this document are provided for illustrative purposes, and are valid for the stated
computing system. Throughput results vary from system to system.

Page 4 cwcelectronicsystems.com

The following graphs were generated using the GT
memory throughput numbers listed in Table 1 for
SystemA.

The throughput numbers provide useful information
regarding DMA and PIO performance on this
computer. Let the buffer sizes at which DMA access
outperforms PIO access be referred to as the DMA
thresholds. Here, the write DMA threshold is 1024
bytes, and the read DMA threshold is 128 bytes. So,

Figure 1: A graphical representation of Table 1

Figure 2: A graphical representation of Table 1, zoomed to
DMA vs. PIO performance thresholds

when accessing GT memory under conditions similar
to those when the throughput numbers were taken, the
access method can be selected based on the read and
write DMA thresholds. PIO can be efficiently used for
buffer sizes below the respective DMA threshold, and
DMA can be efficiently used for buffer sized above the
respective DMA threshold.

Numbers such as those presented above are helpful
in selecting the correct access method for use in an
application. However, they provide only a snapshot
of performance capabilities under low system load
conditions. Many factors can have considerable
impact on overall performance. Such factors include
CPU load, PCI bus performance, memory speed,
GT network load, and the timing of events within
the system. Analysis of performance under expected
operating conditions is recommended.

Additional instances of gttp (or other GT utility
applications) can be executed to simulate expected
operating conditions. For example, executing an
additional gttp instance on the target computer will
impose resource sharing and addition CPU and
memory load. In addition, writing to GT shared
memory with gttp from remote nodes will impose
network bandwidth sharing.

An Application with Potential

Assume that a shared memory application named
gfixit utilizes 16 small contiguously located 32-byte
segments of GT memory for sharing status and control
information among 16 nodes on the GT network. Each
node is responsible for updating the 32-byte segment
containing its control and status information. Let each
GT node be identical and have performance numbers
equal to those presented in the previous section,
notably a DMA read threshold of 128 bytes.

Gfixit has a main execution loop that checks the status
of each other node, one by one, by reading their
control/status segments. If the node has new data
available, then the data is retrieved and processed.
The following is pseudo-C-code that implements this.

Page 5 cwcelectronicsystems.com

int readData(int length, ...)
{

if (length >= 128)
{
/* read data from GT memory with
DMA */
}
else
{
/* read data from GT memory using
PIO */
}
return 0;

}

int main(int argc, char **argv)
{

int i;

while (1)
{

for(i=0; i < 16; i++)
{

if (i != /* my status and
control index */)
{

readData (32, ...); /*
read control/status
info for node ‘i’.
This will use PIO. */

/* process control/status
info */

}
else
{

/* update my control/
status info in GT memory*/

}
}

}
return 0;

}

In the simple example above, control data is retrieved
from the other nodes, one by one using PIO. The
application does not retrieve its own data, but instead
refreshes its data in GT memory. Functionally, the
application works, but it is performing a little more
sluggishly than the designer would like. Fortunately, a
modification can be made that will boost performance.

PIO was selected to transfer the 32-byte control
segments because it performs more efficiently for 32-
byte transfers (10.24 MB/s with PIO vs. 4.46 MB/s
with DMA). PIO was the correct choice for the current
design. The total time required to transfer the 15 32-
byte segments with the current code is:

Notice, that the 32-byte control segments are stored
contiguously in shared memory. In general, throughput
performance improves as the transfer size increases.
Instead of reading the control segments one by one,
they can be read all at once. Of course, each node
will read its own control data, but this simplifies the
code. This also permits the data to be transferred
in one large transfer, instead of two smaller ones2.
Reading our own control data is harmless, aside from
adding a little overhead to the transfer. The following is
the modified pseudo-C-code.

32 bytes/node x 15 nodes
10.24e6 bytes/second

=~ 0.000046875 sec = 46.875µsec

2 The nodes having the first and last indices require only one transfer even if they don’t read their own control data. This is
ignored in the interest of simplicity and commonality.

Page 6 cwcelectronicsystems.com

©
 C

op
yr

ig
ht

 2
00

9,
 C

ur
tis

s-W
rig

ht
 C

on
tro

ls
El

ec
tro

ni
c

Sy
ste

m
s

A
ll

Ri
gh

ts
Re

se
rv

ed
. M

KT
-E

S-
G

TM
em

A
cc

-0
10

51
0v

3

int main(int argc, char **argv)
{

int i;

while (1)
{

readData (32*16, ...); /* read
control/status info for
all nodes. This will use DMA.
*/

for(i=0; i < 16; i++)
{

if (i != /* my status and
control index */)
{

/* process control/status
info */

}
else
{

/* update my control/
status info in GT memory*/

}
}

}
return 0;

}

DMA was selected to transfer the control segments in
the new code because the total number of bytes read
at once is now 32 x 16 = 512 bytes. DMA performs
more efficiently for 512-byte transfers (65.55 MB/s
with DMA vs. 10.38 MB/s with PIO). The total time
required to transfer the 512-byte segment with the new
code is:

The new code transfers the data approximately 6 times
faster, even while unnecessarily retrieving its own 32
control bytes.

512 bytes
65.55e6 bytes/second

=~ 0.000007811 sec = 7.811µsec

Conclusion

PIO and DMA access to GT memory each offer
unique characteristics, and finding the correct mix of
DMA and PIO access can improve the performance of
an application, and the efficiency of the entire system.
Many factors can affect application performance, so
in any case, a design will benefit from some analysis.

Product specifications mentioned herein are subject to change without
notice. SCRAMNet is a registered trademarks of Curtiss-Wright Controls
Electronic Systems. All other trademarks or registered trademarks
mentioned herein are the sole property of their respective owners. ©
2004, Curtiss-Wright Controls Electronic Systems, All Rights Reserved.

