
Chapter 1

Strain gages and ideal bridges
TEC/NOT/001

This paper introduces the basics of strain gage theory and the terminology used. It examines how these gages can be used in a
variety of ways with Wheatstone bridges, focusing on how strain can cause a change in resistance, which in turn causes a
voltage change across the bridge that can be measured. Also, the relationship between the output voltage and the change in
resistance is described for the more popular bridge configurations.

The following topics are discussed:

•    “1.1   Stress and strain” on page 1
•    “1.2   Strain and fractional change in resistance” on page 2
•    “1.3   Sources of error in the gage” on page 3
•    “1.4   The Wheatstone bridge and Poisson’s ratio” on page 4
•    “1.5   Resistance as a function of fractional change” on page 5
•    “1.6   Equations for two active gages, one of which is Poisson” on page 6
•    “1.7   Straight line approximations” on page 9
•    “1.8   Conclusion” on page 9
•    “1.9   References” on page 9

1.1  Stress and strain
The following figure displays a piece of metal fixed at one end and attached to a dangling mass at the other.

Figure 1-1: A beam under stress

The mass (m) causes a force (F), which places the beam under stress (), causing the beam to increase in length (lnoml).

In this paper, ”“ denotes "equal by definition” and the subscript “nom” denotes “the unstrained/unstressed or nominal
condition”.

Strain is a measurement of the fractional change in length and is defined as:

For certain materials, there exists a small elastic range where the strain is linear with respect to stress. In particular Hooke's law
states:

where E is Young's modulus.

If, as in the previous figure, the force is perpendicular to the cross-section and positive, then the force is said to be uniaxial and
tensile. If the force is negative, then it is said to be compressive. If the force acts along the cross section, then it is said to be
shear stress (see the following figure).
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Figure 1-2: Shear stress

Typical strains are in the order of parts per million (ppm) and it is common to use the term  (micro-strain) defined as follows:

1.2  Strain and fractional change in resistance
The following figure exaggerates how the shape of a piece of metal changes with strain.

Figure 1-3: How the shape of a cylinder changes when stretched

The resistance of a piece of metal is proportional to its length (l) and inversely proportional to its cross sectional area (A). The
volume (V), which remains constant, is a product of length and area (V=l.A). In other words:

The constant of proportionality is , the material resistivity: 

Because strain is defined as a fractional change in length, the resistance (which is a function of length as just shown) can be
used as a means of measuring strain.

The fractional change in resistance () can be defined as:

Substituting the equation for R above (and canceling V and the resistivity constant) this becomes:
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From the definition of strain :

Combining the last two equations gives a formula for fractional change as a function of strain:

For very small strains the second order term is sometimes ignored:

Hence the nominal gage factor (FG) of 2 used for strain gages.

Even if the gage factor is not 2 (or is not even linear) it must be known (from manufacturers data sheets) or deduced (from
experience or calibration). The rest of this paper, apart from a short discussion of errors, assumes the gage factor is known and
concentrates on measuring .

1.3  Sources of error in the gage
The following sources of error are evident in strain gage systems:

• The bridge itself
• The measurement equipment

This section looks briefly at some of the errors that can exist in the bridge itself due to bonding and temperature. Other
application notes look at errors in the measurement equipment.

1.3.1 Temperature errors
Strain gages on airplanes are rarely kept at a constant temperature. To measure the resistance, current is applied, which
causes power dissipation (heating) in the gage.

Sometimes referred to as pseudo-strains, heating causes the following types of errors:

• As the gage, bonding and member change temperature, they expand or contract at different rates. In other words, with a 
constant stress the strain changes.

• The resistivity of the gage (and hence its resistance) changes with temperature.

These errors can be somewhat compensated for with a known gage, current, type of bonding and material by measuring the
temperature. However this is not always practical.

Certain gages when used with specific current, bonding and material are designed to self compensate.

In bridge circuits advantage is often taken of the fact that the absolute resistance values of bridge arms is less important than
the ratio (see “1.4  The Wheatstone bridge and Poisson’s ratio” on page 4) so that gages can have compensation arms (bonded
perhaps at right angles to the strain being measured).

1.3.2 Bonding errors
Great care must be taken when bonding gages to a structure.

If the gage is not parallel to the strain being measured, this causes an error. For example, even being out by 2.5° causes
approximately 0.1% gain error.

If the gage is not flat, it appears shorter with respect to the direction of strain, thus causing a gain error.

If the bonding material is not of the correct type and thickness, the heat dissipation will not be as expected and hence a strain
error will be induced on the gage.


l lnom–

lnom

----------------- l
lnom

--------- 1
l

lnom

---------–=  1+=

  1+ 2 1 2  2+=–=

 2 
11 Apr. 2017 | TEC/NOT/001 3



1.4  The Wheatstone bridge and Poisson’s ratio
The bridge has two sides (left and right) and four arms (see the following figure).

Figure 1-4: The Wheatstone bridge

On the left hand side, R1 and R2 act as a resistor divider so V0+ can be calculated as:

Similarly for the right hand side V0-:

V0 = V+ minus V- is therefore:

If the ratio on one side equals that on the other (R2/R1 = R4/R3), the output voltage (V0) is 0V. The fact that the ratios determine

the output enables compensation gages to be used to compensate for bonding and temperature errors.

In the previous figure, if R2 was a gage, R1 could be used to compensate for some of the errors. However, to do this it should
ideally be of the same type and bonded as close as possible to R2. It must be bonded perpendicularly to R2 so as not to cancel
out R2 altogether.

The following figure exaggerates how the perpendicular gage experiences a strain of opposite polarity, but of smaller
magnitude. This ratio of the transverse magnitudes is known as Poisson's ratio () and for most metals is approximately 0.3.
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Figure 1-5: An illustration of transverse strain

Sometimes the compensation gage can be mounted so that the strain is the same magnitude but of opposite sign, as with
bending beams as displayed in Figure 1-6 on page 6.

1.5  Resistance as a function of fractional change
Previously in this paper, the fractional change in resistance for a resistor was defined as:

This can be rewritten as:

In the analysis which follows, resistance values of active gages are replaced with the above equation.

In particular, a Poisson gage, when used, is written as:

where  is the Poisson ratio, and the negative sign indicates strain in the opposite direction to the principle axis.

The following figure illustrates the use of Poisson compensation and “opposed” compensation as used on bending beams.


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Figure 1-6: An uncompensated gage and two types of compensation

In the next section, the output voltage (V0) as a function of the fractional change () is examined. The inverse function, , is as

important a function of V0. 

Knowing the output voltage of a bridge, how is the fractional change causing it, and hence the strain, calculated?

The analysis is carried out using the two active arms with Poisson as shown in the previous figure. One reason for this is the
equations for the single gage can be got by setting =0 and for the opposed configuration by setting =1.

1.6  Equations for two active gages, one of which is Poisson
The following figure displays two active gages, one of which (R1) is mounted perpendicular to the uniaxial stress and hence
experiences a transverse (Poisson) strain. An amplifier with a gain (G) is also displayed.

Figure 1-7: Bridge with two active arms (one Poisson) and amplifier

The output voltage of the amplifier is defined as:

Given a bridge that is balanced in the unstrained condition (that is, R1nom/R2nom = R4/R3 = 1), the equation becomes:

This is the relationship between V0 and . For small  this is almost linear and the sensitivity (S) can be defined as:
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From the last two equations, to get the relationship between  and V0:

Bringing the terms with  to the left gives:

Therefore,

A Maclaurin (or Taylor about 0) series expansion gives:

These equations have been derived for seven types of bridge as shown in the following table. If the left-hand side arms are
swapped with the right-hand side then multiply the sensitivity by -1. If the top arms are swapped with the bottom arms, again
multiply the sensitivity by -1.

Table 1-1:  Bridge types

Topology Description Sensitivity Vo() (Vo)
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 Two active 
gages with equal 
and opposite 
strains, typical of 
bending beam 
arrangement

  

Two active 
gages in uniaxial 
tension or 
compression, 
one mounted 
perpendicular 
(Poisson=n) 

 

 Two active 
gages,
for example, 
used on opposite 
sides of column 
with low 
temperature 
gradient

 Same as Type A above Same as Type A above

 Four active 
gages, paired in 
equal and 
opposite uniaxial 
tension or 
compression

 Same as Type B above Same as Type B above 
(LINEAR)

 Four active 
gages, in 
uniaxial tension 
or compression, 
two mounted 
perpendicular 
(Poisson=n)

 Same as Type C above Same as Type C above 

Four active 
gages, Poisson 
pairs at equal 
strain but 
opposite sign, for 
example, beam

Same as Type F 
above

Same as Type B above Same as Type B above 
(LINEAR) 

Table 1-1:  Bridge types

Topology Description Sensitivity Vo() (Vo)
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1.7  Straight line approximations
How important are the higher coefficients? The following table lists the approximate errors (in ppm) for assuming first, second,
third or fourth order fits, for  as a function of V0, for various values of mΩ/Ω:

These errors are calculated with respect to the expected value. In bipolar applications, the range is twice either extreme so the
errors with respect to full range is halved:

• With a 10-bit A/D system, one count corresponds to 977ppm ( 0.1%)
• With a 12-bit A/D system, one count corresponds to 244ppm ( 0.025%)
• With a 16-bit A/D system, one count corresponds to 61ppm

1.8  Conclusion
This paper introduced the basics of strain gage measurement using Wheatstone bridges. Equations were given relating the
voltage measured on a bridge to the fractional change in resistance, which in turn is a function of strain. 

While some of the sources of errors within the gage itself were briefly discussed, the assumption was made that the excitation
and gain circuitry were free from errors.

1.9  References
A series of technical notes on strain gages are available from:

Measurements Group INC. 

P.0. Box 2777

Raleigh 

North Carolina 27611 

USA

Applied Measurement Engineering

Charles P Wright

Prentice Hall

Table 1-2:  Error calculated in respect of expected value

=mΩ/Ω me 1st order 2nd order 3rd order 4th order

100,00 50,000 -50,000 -2750 -150 8

50,000 25,000 -25,000 -600 -20 -0.25

10,000 5,000 -5000 -25 0 0
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