Tin whisker growing out of a pure tin surface of a lead-free electronic component. Curtiss-Wright subjects assemblies to harsh environment sequences known to grow whiskers in order to evaluate the effectiveness of mitigations.
        
Above image shows an insidious failure mode known as pad cratering beneath a BGA solder ball. Curtiss-Wright has performed extensive testing on pad cratering and implemented a mitigation approach that substantially improves reliability.
        
Photo of PWB microsection showing microvia failure. Curtiss-Wright has been performing reliability testing (Interconnect Stress Testing) on production lots of PWBs for over a decade


What is the difference between ruggedness, ruggedization and reliability? Is a rugged card reliable? Is a ruggedized module reliable? How about vice versa? Many vendors claim they have rugged electronics capable of meeting the harsh environments of defense and aerospace applications. Does that mean their products are reliable? Let us take a look at some definitions:

Rugged – strongly built or constituted (Source: Merriam-Webster on-line)

Ruggedize – to strengthen for better resistance to wear, stress, and abuse (Source: Merriam-Webster on-line)

Reliability – the ability of a product to function under given conditions and for a specified period of time without exceeding acceptable failure levels (Source: IPC-9701, Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments)

The ruggedness definition is the most vague, and leaves much to be desired in terms of clarity and specificity. Ruggedization is better, and allows for further definition such as the ruggedization levels of different product classes (e.g. Curtiss-Wright Ruggedization Table).

The reliability definition allows us to be very specific by defining “given conditions,” “period of time,” and “acceptable failure levels”. A deeper understanding of reliability leads to going beyond traditional metrics like MTBF (mean time between failures), and working to understand and apply the physics of failure (PoF). Curtiss-Wright COTS Solutions has been dedicated to such an approach for many years and we have built a broad and deep understanding of rugged electronics failure modes, mechanisms, and mitigations for a variety of environments. This hard-earned knowledge has been diligently applied to each new product we design and build.

Below are some examples of how this approach has permeated our design, manufacturing and test processes:

  • Reliability Risk Assessment (RRA) process performed early in the product design stage to consistently apply our reliability knowledge base
  • PWB reliability testing through Interconnect Stress Testing (IST)
  • Sine and random vibration testing on every new product, with full functional testing during vibration
  • Reliability Demonstration Testing (RDT)
  • Solder Joint Reliability (SJR) testing
  • On-going reliability research with leading universities and consortia to gain the latest knowledge, in particular for lead-free electronics

Request Access to Tin Whisker Risks & Mitigation Strategies White Paper

Connect With Curtiss-Wright Connect With Curtiss-Wright Connect With Curtiss-Wright
Sales

CONTACT SALES

Contact our sales team today to learn more about our products and services.

YOUR LOCATION

PRODUCT INFORMATION

Support

GET SUPPORT

Our support team can help answer your questions - contact us today.

REQUEST TYPE

SELECT BY

SELECT Topic