Advanced RISC Machine (Arm) processors are well known for bringing incredibly high performance to the most advanced smartphones and mobile devices available. The exploding market for commercial mobile devices has pushed chip designers to come up with ever-faster, ever-smaller processors that are less power-hungry than competing options, yet still deliver secure, high-integrity computing. This is an ideal combination for defense, aerospace, and rugged embedded applications.
Here are three reasons why Arm processors are an impressive technology for defense systems and modules, such as single board computers (SBCs).
1. Unparalleled High Performance
Arm technology is based on reduced instruction set computing (RISC), a simplified instruction set architecture that requires fewer microprocessor cycles per instruction and fewer transistors than processors that are based on complex instruction set computing (CISC). Due to the way that Arm implements the instruction set, Arm-based processors can deliver a combination of capabilities that CISC-based processors, and even other RISC-based processors, cannot match.
Numerous extensions that enhance Arm performance are also available, such as Arm NEON technology. This advanced single instruction, multiple data (SIMD) extension accelerates audio and video encoding and decoding and 2D and 3D graphics rendering to deliver a better multimedia experience. It can also accelerate signal processing algorithms and functions to speed up applications, such as audio and video processing, voice and facial recognition, and computer vision.
Support for floating point operations means the Arm processor can be used in applications that need to deal with large data sets or data sets with unpredictable ranges, while providing high levels of computational accuracy and precision. These applications can range from powertrain, traction control, and active suspension to 3D graphics, imaging, and motion control systems.