
Sensor Processing for Land, Air and Sea Systems
Our Advanced Modular Open Systems Approach to Building Sensor Processing Systems Delivers Greater Capability and Interoperability
We leverage the best commercially developed technology for performance, scalability, and interoperability. Our heterogeneous modular open system approach (MOSA) system building blocks and systems are ruggedly packaged and efficiently cooled for reliability and feature the latest processing technology from domain leaders such as Intel, AMD Xilinx, and NVIDIA.
Our sensor processing solutions use a MOSA, enabling applications to span form factors and platforms. We use standard interfaces and design architectures for interoperability and commonality, from VPX-based line replacement units (LRUs) and their constituent line replacement modules (LRMs) to custom and small form factor processing units.
What is High-Performance Embedded Computing?
High-performance embedded computing (HPEC) tracks the commercial high-performance computing (HPC) domain, benefiting from technological advances made in that market. As their technologies evolve, the HPEC market adapts by selecting the appropriate technologies that meet the essential elements of an HPEC system including maximizing floating-point and multi-processor performance, designed with open standards & SWaP, operating securely in harsh environments, and more.
Benefit From Best-in-Class Security, Ruggedization and Reliability
Don’t compromise on program requirements and security. To protect data security, we go beyond cybersecurity and encryption, applying rigorous supply chain processes that protect the integrity of all components on every module, subsystem, and system. Our ruggedization processes are based on decades of research and development and the highest industry standards including VPX (VITA 46/48 & 65), VITA 47, 48.8, and more.
Server-Class Radar and SAR Processing Systems Next to the Aperture
Radar and synthetic aperture radar (SAR) require powerful, highly ruggedized, and SWaP-efficient processing nodes at the sensor. Our radar processing building blocks include GPU data stream processing engines, Intel server-class DSPs, wideband PCIe switching, storage, and AMD FPGA technology. Learn how an engineering company needs data center-like processing to power its next-gen SAR system.
Upgrading EW Capabilities at the Speed of Technology
Our rugged, SWaP-optimized EW system building blocks include analog-to-digital converters (ADCs) to digitize analog signals, SBC, DSP engines with data center-class CPUs, parallel processing GPUs, and low-latency FPGAs for signal exploitation and cognitive processing and digital-to-analog converters (DACs) to drive EW countermeasures and effectors. Our modular open system approach to designing system building blocks enables our EW systems to be continually updated and refreshed. The same building blocks form the basis of other electromagnetic spectrum dominating technologies, including digital RF memory (DRFM), signal intelligence (SIGINT), and electronic countermeasure (ECM) systems. Learn how a helicopter manufacturer increased platform survivability by upgrading their EW suite with greater situational awareness and countermeasure responsiveness.