Sensor Processing

B52
Sensor Processing

Sensor Processing for Land, Air and Sea Systems

Our Advanced Modular Open Systems Approach to Building Sensor Processing Systems Delivers Greater Capability and Interoperability

We leverage the best commercially developed technology for performance, scalability, and interoperability. Our heterogeneous modular open system approach (MOSA) system building blocks and systems are ruggedly packaged and efficiently cooled for reliability and feature the latest processing technology from domain leaders such as Intel, AMD Xilinx, and NVIDIA. 

 

Sensor Processing Solutions

Our sensor processing solutions use a MOSA, enabling applications to span form factors and platforms. We use standard interfaces and design architectures for interoperability and commonality, from VPX-based line replacement units (LRUs) and their constituent line replacement modules (LRMs) to custom and small form factor processing units.

HPEC Systems
Delivering supercomputing processing performance through low latency system fabrics, distributed processors, I/O and software.
Processor Modules
Maximize system processing with high performance SBCs and DSPs with Trusted Computing
FPGA Modules
Enhance front-end sensor processing with 3U VPX, 6U VPX, and XMC FPGA cards
GPGPU Modules
Bring high-performance processing and machine learning capabilities to 3U and 6U VPX systems.
I/O Modules
Ensure seamless integration and communication between cards and from your sensors to your 3U or 6U VPX system.
Networking Modules
Keep the warfighters and flight test crews connected with field-proven networking and communications solutions.
3U Computing Systems
Meet your program requirements (including those around SOSA, CMOSS, and OMS) with our selection of 3U VPX systems integrated with COTS modules.
6U VPX Systems
Tailor your system to meet program requirements with our selection of 6U systems, COTS modules, and expert system integration services.
Program-Specific Systems
Examples of program-specific systems that our expert integration services teams designed for similar applications.
Data Storage & Recording Systems
Innovative data recording and storage systems, modules, and drives with encryption options to protect mission-critical data-at-rest.
Video Systems & Displays
Enhance situational awareness with video acquisition, management, recording and display solutions.

What is High-Performance Embedded Computing?

High-performance embedded computing (HPEC) tracks the commercial high-performance computing (HPC) domain, benefiting from technological advances made in that market. As their technologies evolve, the HPEC market adapts by selecting the appropriate technologies that meet the essential elements of an HPEC system including maximizing floating-point and multi-processor performance, designed with open standards & SWaP, operating securely in harsh environments, and more.

More ISR Sensor Processing Capability in Smaller Systems

Steaming data from intelligence, surveillance, and reconnaissance (ISR), electro-optical, and infrared (EO/IR) sensors require powerful processing nodes next to the sensor. These wideband processing and storage resources need to be highly ruggedized and extremely size, weight, and power-efficient. Our ISR processing building blocks include NVIDIA GPU data stream processing engines, Intel server-class DSPs with AI acceleration for cognitive information extraction, wideband, low-latency switches, dense storage, and the AMD Xilinx FPGA technology. Learn how a leading prime subcontractor added capability to their ISR system with advanced processing while reducing their program cost, schedule, and system size.

Benefit From Best-in-Class Security, Ruggedization and Reliability

Don’t compromise on program requirements and security. To protect data security, we go beyond cybersecurity and encryption, applying rigorous supply chain processes that protect the integrity of all components on every module, subsystem, and system. Our ruggedization processes are based on decades of research and development and the highest industry standards including VPX (VITA 46/48 & 65), VITA 47, 48.8, and more.

Server-Class Radar and SAR Processing Systems Next to the Aperture

Radar and synthetic aperture radar (SAR) require powerful, highly ruggedized, and SWaP-efficient processing nodes at the sensor. Our radar processing building blocks include GPU data stream processing engines, Intel server-class DSPs, wideband PCIe switching, storage, and AMD FPGA technology. Learn how an engineering company needs data center-like processing to power its next-gen SAR system.

Upgrading EW Capabilities at the Speed of Technology

Our rugged, SWaP-optimized EW system building blocks include analog-to-digital converters (ADCs) to digitize analog signals, SBC, DSP engines with data center-class CPUs, parallel processing GPUs, and low-latency FPGAs for signal exploitation and cognitive processing and digital-to-analog converters (DACs) to drive EW countermeasures and effectors. Our modular open system approach to designing system building blocks enables our EW systems to be continually updated and refreshed. The same building blocks form the basis of other electromagnetic spectrum dominating technologies, including digital RF memory (DRFM), signal intelligence (SIGINT), and electronic countermeasure (ECM) systems. Learn how a helicopter manufacturer increased platform survivability by upgrading their EW suite with greater situational awareness and countermeasure responsiveness.